Prg67.ru

Онлайн вебинары
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что можно программировать на python

Что такое Python: чем он хорош, где пригодится и как его выучить

Python — самый быстрорастущий язык программирования за последние несколько лет. Об этом говорит исследование StackOverflow за 2019 год. Давайте разберёмся, за что его любят разработчики и почему мы советуем начинающим программистам попробовать его в качестве первого языка.

Python просто понять и изучить

Вам точно стоит попробовать Python, если вы никогда не писали код, но хотите получить первую работающую программу как можно быстрее. Самый простой пример — программа, которая выводит на экран заданную фразу. Вот как выглядит ее код на трёх разных языках. Сравните количество и понятность строк кода.

“Java” справляется в 5 строк, используем множество скобок.

“C” работает похоже, хоть строк и немного меньше:

Python использует одну понятную строку:

Конечно, это не значит, что так будет всегда. Есть программы посложнее, но в них всё ещё можно разобраться, если немного знать английский. Например, вот программа, которая умеет отправлять электронные письма:

редакция нетологии

У Python много готовых библиотек для решения задач

Библиотеками в программировании называют инструменты для решения конкретных типов задач. Вот несколько примеров популярных библиотек для Python:

Pygame. Библиотека для создания небольших игр и мультимедийных приложений.

NumPy. Библиотека для работы с искусственным интеллектом и машинным обучением. Используется для сложных математических вычислений.

Pandas. Библиотека для работы с большими данными.

SQLAlchemy. Библиотека для работы с базами данных.

Django, Flask. Библиотеки для разработки серверной части приложений.

Наличие библиотек значит, что под каждую задачу есть свой инструмент. Придумывать что-то сложное с нуля не придется.

Python используют компании-гиганты

Многие известные нам компании и организации используют Python:

  • Spotify и Amazon используют Python для анализа данных и создания рекомендаций.
  • Walt Disney использует Python как скриптовый язык для анимации.
  • YouTube и Instagram целиком написаны на Python.
  • Если этого недостаточно, есть ещё NASA: их система автоматизации процессов WAS тоже создавалась средствами Python.

Python надолго останется популярным

Скорее всего, вы слышали о машинном обучении и больших данных. Хорошая новость — Python считается лучшим языком программирования для работы в этих областях. Вот что делают с его помощью:

  1. Собирают данные покупательской активности, строят гипотезы и находят новые точки роста компании.
  2. Разрабатывают алгоритмы машинного обучения. Например, Netflix написали свой рекомендательный сервис на Python.
  3. Автоматизируют рутинные задачи. Например, простой скрипт на Python может собрать все ссылки или картинки с указанного сайта и сохранить их в папку.

Python-разработчикам готовы платить

По данным калькулятора зарплат на сайте «Мой Круг», средняя зарплата младшего (Junior) Python-разработчика — примерно 60 000 рублей. В зависимости от региона, требований компании и умений кандидата, цифра может меняться. Python-разработчики среднего и высокого уровня (Middle и Senior) получают более высокие зарплаты.

Что можно делать с помощью Python?

Будучи удачно спроектированным языком программирования Python прекрасно подходит для решения реальных задач из разряда тех, которые разработчикам приходится решать ежедневно. Он используется в самом широком спектре применений — и как инструмент управления другими программными компонентами, и для реализации самостоятельных программ. Фактически круг ролей, которые может играть Python как многоцелевой язык программирования, практически не ограничен: он может использоваться для реализации

всего, что угодно, — от веб-сайтов и игровых программ до управления роботами и космическими кораблями.

Однако сферу использования Python в настоящее время можно разбить на несколько широких категорий. Следующие несколько разделов описывают наиболее типичные области применения Python в наши дни, а также инструментальные средства, используемые в каждой из областей. У нас не будет возможности заняться исследованием инструментов, упоминаемых здесь. Если какие-то из них заинтересуют вас, обращайтесь на веб-сайт проекта Python за более

Системное программирование

Стандартная библиотека Python полностью отвечает требованиям стандартов POSIX и поддерживает все типичные инструменты операционных систем: переменные окружения, файлы, сокеты, каналы, процессы, многопоточную модель выполнения, поиск по шаблону с использованием регулярных выражений, аргументы командной строки, стандартные интерфейсы доступа к потокам данных, запуск команд оболочки, дополнение имен файлов и многое

Кроме того, системные интерфейсы в языке Python созданы переносимыми, например сценарий копирования дерева каталогов не требует внесения изменений, в какой бы операционной системе он ни использовался. Система Stackless Python, используемая компанией EVE Online, также предлагает улучшенные решения, применяемые для параллельной обработки данных.

Графический интерфейс

tkinter без изменений могут использоваться в MS Windows, X Window (в one-рационных системах UNIX и Linux) и Mac OS (как в классической версии, так и в OS X). Свободно распространяемый пакет расширения PMW содержит дополнительные визуальные компоненты для набора tkinter. Кроме того, существует прикладной интерфейс wxPython GUI API, основанный на библиотеке C++, который предлагает альтернативный набор инструментальных средств построения переносимых графических интерфейсов на языке Python.

Инструменты высокого уровня, такие как PythonCard и Dabot построены на основе таких API, как wxPython и tkinter. При выборе соответствующей библиотеки вы также сможете использовать другие инструменты создания графического интерфейса, такие как Qt (с помощью PyQt), GTK (с помощью PyGtk), MFC (с помощью PyWin32), .NET (с помощью IronPython), Swing (с помощью Jython — реализации языка Python на Java, которая описывается в главе 2, или JPype). Для разработки приложений с веб-интерфейсом или не предъявляющих высоких требований к интерфейсу можно использовать Jython, веб-фреймворки на языке Python и CGI-сценарии, которые описываются в следующем разделе и обеспечивают дополнительные возможности по созданию пользовательского интерфейса.

Веб-сценарии

писем электронной почты; загружать веб-страницы с указанных адресов URL; производить разбор разметки HTML и XML полученных веб-страниц; производить взаимодействия по протоколам XML-RPC, SOAP и Telnet и многое другое.

Библиотеки, входящие в состав Python, делают реализацию подобных задач удивительно простым делом.

Кроме того, существует огромная коллекция сторонних инструментов для создания сетевых программ на языке Python, которые можно найти в Интернете. Например, система HTMLGen позволяет создавать HTML-страницы на основе описаний классов Python. Пакет mod_python предназначен для запуска сценариев на языке Python под управлением веб-сервера Apache и поддерживает шаблоны механизма Python Server Pages. Система Jython обеспечивает

бесшовную интеграцию Python/Java и поддерживает серверные апплеты, которые выполняются на стороне клиента.

Помимо этого для Python существуют полноценные пакеты веб-разработки, такие как Django, TurboGears, web2py, Pylons, Zope и WebWare, поддерживающие возможность быстрого создания полнофункциональных высококачественных веб-сайтов на языке Python. Многие из них включают такие возможности, как объектно-реляционные отображения, архитектура Модель/Представление/Контроллер (Model/View/Controller), создание сценариев, выполняющихся на стороне сервера, поддержка шаблонов и технологии AJAX, предоставляя

законченные и надежные решения для разработки веб-приложений.

Интеграция компонентов

системы на языке С и C++ делает его удобным и гибким языком для описания поведения других систем и компонентов. Например, интеграция с библиотекой на языке С позволяет Python проверять наличие и запускать библиотечные компоненты, а встраивание Python в программные продукты позволяет производить настройку программных продуктов без необходимости пересобирать эти продукты или поставлять их с исходными текстами.

Такие инструменты, как Swing и SIP, автоматически генерирующие программный код, могут автоматизировать действия по связыванию скомпилированных компонентов в Python для последующего их использования в сценариях, а система Cython позволяет программистам смешивать программный код на Python и С. Такие огромные платформы на Python, как поддержка СОМ

в MS Windows, Jython — реализация на языке Java, IronPython — реализация на базе .NET и разнообразные реализации CORBA, предоставляют альтернативные способы организации взаимодействий с программными компонентами. Например, в операционной системе Windows сценарии на языке Python могут использовать платформы управления такими приложениями, как MS Word и Excel.

Приложения баз данных

Стандартный модуль pickle реализует простую систему хранения объектов, что позволяет программам сохранять и восстанавливать объекты Python в файлах или в специализированных объектах. В Сети можно также найти систему, созданную сторонними разработчиками, которая называется ZODB.

Она представляет собой полностью объектно-ориентированную базу данных

для использования в сценариях на языке Python. Существуют также

инструменты, такие как SQLObject и SQLAlchemy, которые отображают

реляционные таблицы в модель классов языка Python. Начиная с версии Python 2.5,

стандартной частью Python стала база данных SQLite.

Быстрое создание прототипов

оставить на языке Python, что существенно упростит сопровождение и использование такой системы.

Программирование математических

и научных вычислений

Дополнительные инструменты математических вычислений для Python поддерживают возможность создания анимационных эффектов и трехмерных объектов, позволяют организовать параллельные вычисления и так далее. Например, популярные расширения SciPy и ScientificPython предоставляют дополнительные библиотеки для научных вычислений и используют возможности расширения NumPy.

Читать еще:  Программирование для андроид самоучитель

Игры, изображения, искусственный интеллект,

XML роботы и многое другое

• Создавать игровые программы и анимационные ролики с помощью

• Обмениваться данными с другими компьютерами через последовательный

порт с помощью расширения PySerial

• Обрабатывать изображения с помощью расширений PIL, PyOpenGL,

Blender, Maya и других

• Управлять роботом с помощью инструмента PyRo

• Производить разбор XML-документов с помощью пакета xml, модуля xmlrp-

clib и расширений сторонних разработчиков

• Программировать искусственный интеллект с помощью эмулятора нейро-

сетей и оболочек экспертных систем

• Анализировать фразы на естественном языке с помощью пакета NLTK.

Можно даже разложить пасьянс с помощью программы PySol. Поддержку многих других прикладных областей можно найти на веб-сайте PyPI или с помощью поисковых систем (ищите ссылки с помощью Google или на сайте http://www.python.org).

Вообще говоря, многие из этих областей применения Python — всего лишь разновидности одной и той же роли под названием «интеграция компонентов». Использование Python в качестве интерфейса к библиотекам компонентов, написанных на языке С, делает возможным создание сценариев на языке Python для решения задач в самых разных прикладных областях. Как универсальный, многоцелевой язык программирования, поддерживающий возможность интеграции, Python может применяться очень широко.

Для чего нужен язык программирования Python

Какие компании используют язык в работе, сложно ли его учить и насколько востребованы программисты на Python.

Python — это скриптовый язык программирования. Он универсален, поэтому подходит для решения разнообразных задач и многих платформ, начиная с iOS и Android и заканчивая серверными ОС. Он используется в веб-разработке, создании десктопных и мобильных приложений, программировании игр, а также в аналитике и машинном обучении.

Это интерпретируемый язык — он не компилируется, то есть до запуска представляет из себя обычный текстовый файл. Программировать можно практически на всех платформах, язык хорошо спроектирован и логичен.

Разработка на нем в разы быстрее, потому что приходится писать меньше кода, чем на Java, С и других языках, — он отлично подходит новичкам.

Для чего используется Python

Python подходит для разработки любых проектов на разных платформах. Его можно встретить в вебе, на мобильных устройствах, в приложениях, решениях, связанных с машинным обучением (нейросети и искусственный интеллект), и даже в качестве встроенной системы.

Веб-разработка

Чаще всего Python используется в веб-разработке. Для работы с ним используются фреймворки: Pyramid, Pylons, TurboGears, Flask, CherryPy и — самый популярный — Django.

Существуют и движки для создания сайтов на Python:

Часто язык используют для написания парсеров, которые собирают информацию в интернете.

Программы

Хоть Python и не компилируется, его можно использовать для создания десктопных программ. Вот небольшой список того, что было разработано на Python:

  • GIMP — визуальный редактор в ОС Linux;
  • Ubuntu Software Center — центр приложений в ОС Ubuntu (один из дистрибутивов Linux);
  • BitTorrent до 6 версии (позже программу переписали на C++, но сети peer-to-peer все еще работают на Python) — менеджер торрент-закачек;
  • Blender — программа для создания 3D-графики.

Также некоторые программы частично написаны на Python, об этом читайте дальше.

Мобильные приложения

Мобильная разработка на Python менее популярна. Для устройств на Android чаще пишут на Java, C#, C++ или Kotlin, а для iOS — на Swift или Objective-C. На Python обычно программируют серверную часть приложения. Например, клиент Instagram для iOS написан на Objective-C, а сервер — на Python.

Многие компьютерные игры были полностью или частично написаны на Python. Существует заблуждение, что этот язык не подходит для серьезных проектов, но на самом деле он использовался в разработке таких хитов, как:

  • Battlefield 2;
  • World of Tanks;
  • Civilization IV;
  • EVE Online.

Несмотря на то что в Python есть возможность реализации пользовательского интерфейса и работы с графикой, чаще всего язык используют для написания скриптов — например, взаимодействия персонажей, запуска сцен, а также обработки событий.

Встроенные системы (embedded systems)

На Python часто разрабатывают встроенные системы для различных устройств. Например, его используют в Raspberry Pi (компьютер размером с карту памяти) и в «Сбербанке» для управления банкоматами.

Еще проекты со встроенной системой на Python:

  • The Owl Embedded Python System;
  • Python Embedded Tools;
  • Embedded Python.

Язык применяется во встроенных системах станков с ЧПУ, средствах автоматического регулирования (температуры, расхода жидкостей, давления и так далее) и телекоммуникационном оборудовании.

Создание скриптов

Python можно использовать для написания плагинов и скриптов к уже готовым программам. Например, для реализации игровой логики. Также он может использоваться для создания дополнительных модулей.

Часто на Python пишут скрипты, которые встраивают в программы на других языках, чтобы автоматизировать какие-либо задачи.

Отсрочка оплаты на полгода. Научитесь писать программы и разрабатывать веб-приложения — и за 12 месяцев станете востребованным разработчиком.
Подробнее >>>

Где используется Python

Python широко распространен во многих сферах, от системного администрирования до Data Science.

Системное администрирование

Python часто используется системными администраторами для автоматизации задач. Он простой, мощный и поддерживает специальные пакеты, которые повышают его эффективность. И, самое главное, он по умолчанию установлен на все серверы с ОС Linux.

Благодаря лаконичности Python можно быстро прочесть код и найти слабые места. Форматирование в языке — часть синтаксиса.

Научные исследования

В Python есть несколько библиотек, которые можно использовать для проведения исследований и вычислений:

  • SciPy — библиотека с научными инструментами;
  • NumPy — расширение, которое добавляет поддержку матриц и многомерных массивов, а также математические функции для работы с ними;
  • Matplotlib — библиотека для работы с 2D- и 3D-графикой.

Благодаря библиотекам и простоте освоения языка многие ученые выбирают Python — особенно он популярен у математиков и физиков.

Data Science

Python — один из самых используемых в Data Science языков. На нем пишут алгоритмы программ с машинным обучением и аналитические приложения. С помощью него обслуживают хранилища данных и облачные сервисы.

Также с его помощью можно парсить (scrapping) данные из интернета. Например, в Google Python применяют для индексации сайтов.

Какие компании используют Python

В основном Python используется стартапами и компаниями, которые разрабатывают крупные проекты. Вот лишь часть огромного списка:

  • Alphabet использует язык для скраппинга в поисковике Google и реализации сервиса YouTube;
  • One Laptop Per Child — для разработки интерфейса и модели функционирования;
  • BitTorrent — для реализации сетей peer-to-peer;
  • Агентство национальной безопасности США — для шифрования и анализа разведданных;
  • ESRI — как инструмент настройки геоинформационных программ;
  • Maya — для создания мультипликации;
  • Pixar, Industrial Light & Magic — для создания анимационных фильмов;
  • Intel, Cisco, HP, Seagate, Qualcomm и IBM — для тестирования;
  • JPMorgan Chase, UBS, Getco и Citadel — для прогнозирования финансового рынка;
  • NASA, Los Alamos, Fermilab, JPL — для научных вычислений;
  • iRobot — для разработки коммерческих роботизированных устройств;
  • IronPort — для реализации почтового сервера.

Кроме того, его используют в Instagram, Positive Technologies, Houdini, Facebook, Yahoo, Red Hat, Dropbox, Pinterest, Quora, Mail.ru и «Яндексе».

Недостатки языка Python

Несмотря на все достоинства, у языка есть и недостатки. Программы на нем считаются одними из самых медленных. Для сравнения: приложения для iOS на Swift работают в 8,7 раз быстрее, чем приложения на Python.

У Python существует реализация PyPy, которая по скорости близка к Java, но в ней есть не все возможности оригинального языка. Python не подходит для задач, требующих большого объема памяти, — их лучше решать вставками на C или C++.

Другим недостатком является сильная зависимость языка от системных библиотек, из-за чего затрудняется перенос на другие системы. Для этих целей существует инструмент Virtualenv, но и он с недостатками: избыточность полных методов изоляции, костыли, дублирование системных библиотек.

Еще одна проблема — в том, что Global Interpreter Lock (GIL) не позволяет выполнять несколько потоков Python одновременно в реализации CPython. Однако GIL можно отключить на какое-то время, как это сделано в математическом пакете NumPy.

Трудоустройство и средняя зарплата Python-разработчика

По данным с hh.ru на начало 2019 года, в России

4500 вакансий для Python-разработчиков, из них

2000 в Москве и

700 в Санкт-Петербурге. Это меньше, чем по запросу «Java» (

Читать еще:  Экстремальное программирование xp

5500), но больше, чем по запросу «PHP» (

3600), — можно заметить тенденцию, что Python медленно забирает позиции PHP с рынка веб-разработки. Хотя на PHP все еще написано около 80% всех сайтов в интернете.

Минимальная зарплата по России начинается с 70 000 рублей, а в Москве — с 80 000 рублей. В основном ищут опытных разработчиков, junior-специалисты менее востребованы.

На должность стажера или младшего специалиста можно устроиться только в крупную компанию, а расположены они в больших городах типа Москвы и Санкт-Петербурга. Из-за этого новичкам крайне сложно устроиться в регионах — остается искать заказы на фрилансе.

Если вас заинтересовал Python, пройдите курс от Skillbox — на нем вы не только получите необходимые знания и навыки, но и сможете составить привлекательное резюме и добавить дипломную работу в портфолио.

Сферы применения языка Python

Python – это не просто язык программирования. Это целый мир со своими возможностями, трудными задачами и способами их решений. Новичку, который только начал знакомство с языком, довольно трудно осознать, в каких областях могут пригодиться его знания.

На самом деле, выбор довольно огромный. Python с каждым днем всё активнее завоевывает рынок, и на сегодняшний день он занимает одну из лидирующих позиций среди все остальных языков, соревнуясь за первенство с «монолитами» индустрии.

Конечно, Питон никогда не сможет заменить низкоуровневые C и C++, ведь именно они способны практически полностью контролировать процессор, не займет место Java, предназначенный для разработки сложнейших приложений. Также, Python нельзя назвать аналогом JavaScript, который поддерживается огромной долей сайтов.

Но почему Питон всё ещё движется к своему Олимпу? По какой причине его не вытиснили конкуренты? Ведь даже сам создатель Python, Гвидо ван Россум, в далеком 1989 году заявил, что не пророчит своему языку популярность на рынке.

На самом деле, с Питоном всё максимально прозрачно – он простой и универсальный, поэтому может применяться для работы по многим направлениям.

Web-разработка

На Питоне можно делать весь backend интернет-ресурса, который будет выполняться на сервере. Делается это при помощи специальных фреймворков (Django и Flask), написанных на этом языке. С их помощью упрощается процесс обработки адресов, обращение к базам данный и создание HTML, отображающихся на пользовательских страницах.

На сегодняшний день сторонними разработчиками написано большое количество дополнительного инструментария, направленно на реализацию сетевых приложений. К примеру, инструмент HTMLGen позволяет создавать готовые классы под страницу на HTML, используя для этого язык Питон. А пакет mod_python облегчает запуск сценариев Apache, обеспечивая при этом стабильную работу шаблонов Python Server Pages.

Графический интерфейс

Если говорить о визуальной составляющей в сфере IT, то и здесь Python может показать себя как вполне эффективный инструмент, решающий массу задач. Создавая современные графические интерфейсы на Питоне, можно легко подстроиться под стилистику ОС, в чьей среде создается приложение. Специально для этих целей были созданы дополнительные библиотеки для построения интерфейса – PythonCard и Dabo, облегчающие процесс работы.

Базы данных

Разработчики современной версии Питона создали максимально простой и понятный доступ практически к любым базам данных. Так, на сегодняшний день, в рабочей среде языка находится программный интерфейс, который позволяет пользоваться базами прямиком из сценария с помощью запросов SQL. Также, код, написанный на Python, может с минимальными доработками использоваться для баз данных MySQL и Oracle.

Системное программирование

Ещё одна монетка в копилку возможностей Python – это интерфейсы языка, которые позволяют управлять службами операционных систем Windows, Linux и др. Благодаря этому, Питон открывает массу возможностей для создания портативных программ. Не секрет, что этот язык применяется для написания приложений, используемых системными администраторами. Таким образом, Python ускоряет поиск и открытие файлов, запуск приложений, облегчает вычисления и многое другое.

Сложные вычислительные процессы

Это так самая сфера, где Питон может потягаться в своих возможностях с FORTRAN или C++. Специальное расширение NumPy, написанное для математических расчётов, прекрасно функционирует с массивами, интерфейсами уравнений и другими данными. Как только расширение устанавливается на компьютер, Python без проблем проходит интеграцию с библиотеками формул.

Но NumPy предназначен не только для вычислений. Помимо своей основной задачи, с его помощью можно создавать анимированные элементы и прорисовывать объекты в среде 3D, производя при этом параллельные вычисления. Например, популярное дополнение ScientificPython может похвастаться собственными библиотеками, которые созданы для вычислительных процессов в сфере науки.

Помимо расчётов, Python позволяет визуализировать полученные данные, что доаольно удобно.

Машинное обучение

Помимо основного инструментария, у Python есть дополнительные библиотеки и фреймворки, позволяющие работать в области машинного обучения. Особой популярностью пользуются scikit-learn и TensorFlow. Scikit-learn отличается тем, что в него уже встроены самые распространенные алгоритмы обучения. TensorFlow, в свою очередь – это низкоуровневая библиотека, которая открывает возможности для создания алгоритмов пользователя.

Процессы машинного обучения, основанные на языке программирования Python, помогают реализовывать системы распознавания лиц и голоса, создавать нейронные сети, глубокое обучение и многое другое.

Автоматизация процессов

Сегодня одним из самых востребованных способов использования языка Питон является создание мелких скриптов, автоматизирующих некоторые рабочие процессы. Например, можно написать вполне простой код, который будет «самостоятельно» работать с письмами на электронной почте. Если человеку необходимо отсортировывать письма с определенными ключевыми словами или фразами, то вручную это сделать довольно проблематично, а вот скрипт справится с этой задачей без проблем.

Почему для этого лучше всего использовать именно Python? Во-первых, он отличается вполне простым синтаксисом, который позволяет с легкостью разрабатывать сценарии. А во-вторых, сам код не проходит компиляцию перед запуском, что заметно облегчает процесс отладки.

Игровая индустрия

Зря многие люди недооценивают геймдейв, ведь именно благодаря нему появилось так много гаджетов, разработок и значительно улучшилась графика. Конечно, для крупных проектов Python вряд ли подойдет, его инструментарий в данной области несколько ограничен, но для фанатов этого языка собрать небольшие приложения и инди-игрушки — не такая уж и сложная задача. Для мультиплатформенных игр лучше всего подойдет движок Unity, управляемый с помощью языка C#. Этот инструмент как раз и создан для таких целей.

Изучая Python, не стоит бояться пробовать свои силы, выполняя простые задачи, создавая элементарные скрипты, даже если они кажутся вам слишком шаблонными. Ведь только таким образом вы сможете подобрать для себя подходящее направление, в котором захотите развиваться и строить карьеру.

Что такое Python и для чего он используется

Python — это высокоуровневый язык программирования, который используется в различных сферах IT, таких как машинное обучение, разработка приложений, web, парсинг и другие.

В 2019 году Python стал самым популярным языком программирования, обогнав Java на 10%. Это обусловлено многими причинами, одна из которых — высокая оплата труда квалифицированных специалистов (около 100 тысяч долларов в год).

Язык программирования Python

Различные языки программирования обычно доминируют в какой-то отрасли (или нескольких), для работы в которой они хорошо подходят. Но это не значит, что программист ограничен использовать строго определённый инструмент, поэтому любой язык общего назначения, такой как Python, может применять для создания чего-угодно.

Python смог захватить малую часть рынка веб-разработки, иногда используется для написания десктопных приложений и, конечно, тотально доминирует в сфере машинного обучения. Кроме того, на нём создаётся много прототипов, которые позволяют быстро набросать функционал и внешний вид будущего проекта.

Происхождение названия

Автор языка Python назвал его в честь британского комедийного шоу “Monty Python”, которое было популярно в начале 1970-х годов.

Это телешоу позволяло автору расслабиться и отвлечься от разработки языка. Однако, несмотря на настоящее происхождение названия, для людей более очевидно связывать Python со словом “змея”. Этому также способствует логотип, на котором изображена рептилия.

И хотя создатель языка не раз говорил, что название никак не связано со змеями, повлиять на мнение общества так и не удалось.

Питон или Пайтон?

Будь то название британского телешоу или английское звучание слова “змея”, Python правильно произносить, как Пайтон. Однако, около 80% Российского сообщества привыкли использовать слово “Питон”.

Нельзя сказать, что однозначно правильно использовать один из вариантов, многие названия адаптируются под произношения конкретного языка, а изменить сложившиеся привычки общества очень сложно. Однако, вариант названия “Питон” уместно употреблять только в разговоре с русскоязычными собеседниками, потому что на любой международной конференции значение слова “Питон” просто не поймут, ведь в английском языке его нет, есть только “Python (Пайтон)”.

Читать еще:  Программирование на юнити для начинающих

Логотип

На логотипе изображены две змеи, образующие квадрат с выпуклым центром, это часто вводит в заблуждение пользователей, вынуждая ассоциировать название языка с рептилией.

Логотип создал брат автора, Юст ван Россум — программист и шрифтовой дизайнер. Он разработал как дизайн логотипа (две змеи), так и шрифт текста Flux Regular.

История создания

Язык начал разрабатывать программист, Гвидо ван Россумом, в конце 1980-х. На тот момент он работал в центре математики и информатике в Нидерландах.

Гвидо ван Россум увлекался работой с «железками» ещё со школьных лет, и хотя он не находил поддержки и одобрения у своих сверстников, это не помешало ему самостоятельно разработать язык программирования.

Россум работал над Python в свободное время, в качестве основы он взял язык программирования ABC, в разработке которого когда-то участвовал.

Этапы истории языка программирования Python:

  • В феврале 1991 исходный код языка был опубликован на alt.sources. Уже тогда язык придерживался объектно-ориентированного подхода, мог работать с классами, наследованием, функциями, обработкой исключений и всеми основными структурами данных.
  • В 2000 году вышла в релиз вторая версия Python. В неё добавили много важных инструментов, включая поддержку Юникода и сборщик мусора.
  • 3 декабря 2008 в релиз вышла третья версия Python, которая является основной до сих пор. Многие особенности языка были переделаны и стали несовместимы с предыдущими версиями. И хотя функциональность третьей версии ничем не уступает второй, развитие языка разделилось на две ветки. Кто-то продолжал использовать Python 2, чтобы поддерживать старые проекты, кто-то полностью перешёл на третью версию.

Дату смерти второй версии установили на 2015 год, однако, боясь не успеть перенести весь существующий код на Python 3, время жизни Python 2 продлили жизнь до 2020 года.

Python — простой язык

Синтаксис Питона всегда выделял его на фоне других языков программирования. Он не страдает избыточностью, схожесть синтаксиса с обычным английским позволяет понять код даже обычному пользователю, кроме того, программист пишет меньше строк кода, потому что нет необходимости использовать символы: «;», «<», «>». Вложенность обозначается отступами, что повышает читаемость кода и приучает новичков к правильному оформлению.

Python упрощает написание кода и делает разработку быстрой, всё потому что он обладает следующими особенностями:

  • Динамическая типизация. Программисту не нужно указывать тип переменных, язык присвоит его сам. Операнды разных типов, участвующие в одной операции, автоматически приводится к нужному по определённым правилам.
  • Удобный возврат нескольких значений функцией. Их можно перечислить через запятую и они автоматически преобразуются в список. Чтобы вернуть массив из функции, достаточно написать “ return имя_массива “. Не нужно выделять память и передавать указатели в функцию.
  • Автоматическое выделение памяти. Программисту не нужно самостоятельно выделять память под что-либо. С одной стороны это уменьшает контроль программиста над программой, с другой, разработка значительно ускоряется.
  • Сборщик мусора. Если объект становится бесполезным (на него перестаёт что-либо ссылаться), он автоматически удаляется сборщиком мусора. Сборщик мусора позволяет оптимизировано использовать память и не удалять бесполезные объекты вручную.
  • a, b = b, a. Эта строка меняет местами значения переменных, теперь то, что было в a, находится в b и наоборот. Такое возможно, потому что Питон сначала рассматривает переменные справа от знака “=” и помещает их в список, то же он делает с элементами слева от “=”, затем он связывает каждый элемент правого списка с левым. Таким способом можно обменивать значения не только двух переменных, но и трёх, пяти и так далее.
  • Привязка типа данных. Тип данных привязан к значению, а не к переменной. То есть значение — это какой-то объект с атрибутами, которые определяют его тип и другие характеристики, а переменная — просто ссылка на этот объект. Такой подход позволил обойтись без явного определения типов и значительно упростил повторное присваивание значения переменной (особенно, если тип нового значения отличен от начального).
  • Цикл for. Работать с массивами, списками и другими контейнерами в Питоне просто и удобно. Когда необходимо перебрать все его элементы, конструкция выглядит так: “ for x in контейнер: ” (перебор идёт от 0 до последнего элемента, его индекс можно обозначить как -1). Если нужно, чтобы прошло определённое количество циклов, пишут так: “ for x in range(1,9): ” (цикл будет выполняться со значениями x от 1 до 8).
  • Интерпретируемый язык. Написанный код не нужно компилировать, достаточно запустить его и получить результат. Более того, можно работать в интерактивном режиме и получать результат буквально после каждой операции.

Чтобы ускорить разработку, часть программы (обычно не сильно влияющую на скорость работы) пишут на Питоне.

Именно благодаря простоте этот язык программирования смог занять доминирующее место в сфере машинного обучения. Люди, так или иначе связанные с наукой, предпочитают не тратить много времени на такие вещи, как написание кода, поэтому Python отлично подошёл для реализации поставленных перед ними задач.

Пример кода:

Популярность

Несмотря на то что языку уже более 29 лет, он популярен среди программистов всего мира. Python используется почти в каждом среднем или крупном проекте, если не как основной инструмент разработки, то как инструмент для создания прототипа или написания какой-то его части.

Он собрал вокруг себя огромное сообщество разработчиков, по результатам опроса на Stackoverflow Python занял 7 место с почти 39% голосов.

Индекс TIOBE

Этот индекс показывает популярность языков программирования, информация обновляется каждый месяц. Оценка популярности основывается на количестве квалифицированных специалистов по всему миру. Для анализа также используются все популярные поисковые системы. Важно понимать, что индекс не показывает лучший язык программирования, он лишь показывает их популярность.

Согласно индексу TIOBE Python занял 3 место с 9-ю процентами популярности. Он уступил лишь языкам Java и C.

Этот индекс основывает на количестве поисковых запросов, касающихся учебных материалов по языку.

По данным с PYPL Python занимает первое место с более чем 29% популярности и на 10% обгоняет Java.

statista.com

Сервис предоставляет различные виды статистики, среди которых – популярность языков программирования.

Согласно опросу более 85 тысяч респондентов, Python занимает 4 место, уступив таким языкам, как JS, языки разметки и SQL.

Скорость работы

Программисты часто задаются вопросом: “Не приведёт ли использование Python к снижению производительности?”. Не стоит делать какие-либо выводы без детального разбирательства.

Если рассматривать только скорость выполнения кода, то становится ясно, что Python уступает другим языкам программирования, таким как C. Действительно, динамическая типизация, интерпретируемость и другие особенности, облегчающие работу программиста, приводят к ухудшению производительности.

Для любого проекта важно выбрать правильный инструмент и лучшую реализацию. Улучшая одно, программист жертвует другим, его задача — найти идеальный баланс, ориентируясь на конкретное техническое задание.

Python позволяет писать достаточно быстрый код, однако может подводить в некоторых “узких” местах, которые и оказывают наибольшее влияние на производительность всего проекта. Чтобы не затянуть разработку и получить на выходе программу, работающую на высокой скорости, её структуру проектируют так, чтобы соотношение “быстродействие/время разработки” было максимальным.

Программисты используют приёмы, позволяющие нивелировать недостаточную скорость выполнения программ на Pyton:

  • Встраивание кода на С. С помощью такого приёма можно заметно повысить производительность, обычно на С пишут те участки кода, которые обрабатывают много запросов в единицу времени. Например, функцию, которая получает данные из одной базы данных, обрабатывает их и отсылает в другую, лучше написать на языке С, если объем проходящей информации достаточно большой.
  • Использование лучших алгоритмов и инструментов. Одну и ту же задачу можно решить по-разному. Во-первых, программист должен выбрать наиболее эффективный алгоритм, обеспечивающий лучшую производительность, например, для поиска элемента в отсортированном массиве можно перебирать его от начала до конца, в лучшем случае (элемент в начале массива) поиск выполнится быстро, в худшем (элемент в конце массива) — медленно. Эффективнее использовать методом деления пополам (двоичный поиск), который найдёт нужный элемент за минимальное количество итерация в массиве любой длины. Во-вторых, для реализации задачи нужно подбирать правильные инструменты. Например, если последовательность элементов строго определена и не изменяется, лучше использовать кортеж, а не список. Он требует меньше места, обрабатывается быстрее и защищён от случайных изменений.
  • Оптимизация интерпретатора. Скорость программ на Python сильно зависит от работы интерпретатора, одни конструкции работают быстрее, другие медленнее.

Ссылка на основную публикацию
Adblock
detector