Что нужно для программирования на python
Что такое Python: чем он хорош, где пригодится и как его выучить
Python — самый быстрорастущий язык программирования за последние несколько лет. Об этом говорит исследование StackOverflow за 2019 год. Давайте разберёмся, за что его любят разработчики и почему мы советуем начинающим программистам попробовать его в качестве первого языка.
Python просто понять и изучить
Вам точно стоит попробовать Python, если вы никогда не писали код, но хотите получить первую работающую программу как можно быстрее. Самый простой пример — программа, которая выводит на экран заданную фразу. Вот как выглядит ее код на трёх разных языках. Сравните количество и понятность строк кода.
“Java” справляется в 5 строк, используем множество скобок.
“C” работает похоже, хоть строк и немного меньше:
Python использует одну понятную строку:
Конечно, это не значит, что так будет всегда. Есть программы посложнее, но в них всё ещё можно разобраться, если немного знать английский. Например, вот программа, которая умеет отправлять электронные письма:
редакция нетологии
У Python много готовых библиотек для решения задач
Библиотеками в программировании называют инструменты для решения конкретных типов задач. Вот несколько примеров популярных библиотек для Python:
Pygame. Библиотека для создания небольших игр и мультимедийных приложений.
NumPy. Библиотека для работы с искусственным интеллектом и машинным обучением. Используется для сложных математических вычислений.
Pandas. Библиотека для работы с большими данными.
SQLAlchemy. Библиотека для работы с базами данных.
Django, Flask. Библиотеки для разработки серверной части приложений.
Наличие библиотек значит, что под каждую задачу есть свой инструмент. Придумывать что-то сложное с нуля не придется.
Python используют компании-гиганты
Многие известные нам компании и организации используют Python:
- Spotify и Amazon используют Python для анализа данных и создания рекомендаций.
- Walt Disney использует Python как скриптовый язык для анимации.
- YouTube и Instagram целиком написаны на Python.
- Если этого недостаточно, есть ещё NASA: их система автоматизации процессов WAS тоже создавалась средствами Python.
Python надолго останется популярным
Скорее всего, вы слышали о машинном обучении и больших данных. Хорошая новость — Python считается лучшим языком программирования для работы в этих областях. Вот что делают с его помощью:
- Собирают данные покупательской активности, строят гипотезы и находят новые точки роста компании.
- Разрабатывают алгоритмы машинного обучения. Например, Netflix написали свой рекомендательный сервис на Python.
- Автоматизируют рутинные задачи. Например, простой скрипт на Python может собрать все ссылки или картинки с указанного сайта и сохранить их в папку.
Python-разработчикам готовы платить
По данным калькулятора зарплат на сайте «Мой Круг», средняя зарплата младшего (Junior) Python-разработчика — примерно 60 000 рублей. В зависимости от региона, требований компании и умений кандидата, цифра может меняться. Python-разработчики среднего и высокого уровня (Middle и Senior) получают более высокие зарплаты.
Как начать программировать на Python
Если вы не знаете, с какого языка начать изучать программирование, — почитайте, что думает об освоении Python программист Skillbox Вадим Шандринов.
6 преимуществ Python
- Легко читаемый код — синтаксис языка построен таким образом, что он не позволяет писать «некрасивый» и неструктурированный код. Программа на Python выглядит как английский текст.
- Переносимость языка — Python является интерпретируемым языком и работает под виртуальной машиной, а это означает, что его можно запускать на разных платформах: MacOS, Linux, Windows, Android, iOS и прочих.
- Ускоренный цикл разработки — языку Python, в отличие от компилируемых языков программирования, таких как С, С++, С#, не нужно время на сборку и компиляцию программы, поэтому программа на Python быстро запускается и сразу показывает результат.
- Множество пакетов — язык имеет большое количество готовых решений и пакетов.
- Поддержка всех стилей программирования — императивный (приказной), объектный, функциональный.
- Низкий порог входа — за несколько дней можно начать писать свои первые программы.
Python и другие языки
В 2017 году Ассоциация инженеров электротехники и электроники IEEE (I triple E, «Ай трипл и») провела опрос на тему популярности языков программирования, и по его результатам Python занял лидирующие позиции.
Возможности Python-разработчика
- Создание веб-приложений — имеет фреймворки для создания сайтов и веб-приложений, например, Django, Flask.
- Автоматизация вычислительных комплексов — специальные серверные программы (Fabric, Ansible), которые разносят обновления по серверам, собирают информацию, позволяют автоматически инсталлировать систему и прочие процессы, которые требуют автоматизации.
- Ведение научных исследований — обработка структурированных и неструктурированных данных огромных объемов, добыча и анализ данных в научной сфере (библиотеки NumPy, Pandas).
- Создание полноценных десктопных приложений — создание переносимых десктоп-приложений (wxPython, pyQt).
- Встраивание приложений в мобильные системы — написание программ и игр под мобильные устройства (kivi), а также для различных устройств (stackless python): терминалов, кассовых аппаратов, роутеров, систем видеонаблюдения.
- Написание скриптов поведения в играх — например, в World of Tanks, EVE Online.
Кто программирует на Python
Компания Google создает свои версии языка и фреймворков. Серверная часть Instagram написана на Python с использованием фреймворка Django. «Яндекс» использует Python для различных внутренних решений, например, в «Яндекс.Картах». В NASA пишут программы для анализа проходящих полетов, различные скрипты для автоматизации вычислительных процессов. Облачное хранилище Dropbox полностью написано на Python, и, кстати, разработчик и создатель языка Гвидо Ван Россум сейчас работает именно там.
Как начать работу с Python
Начать писать программы на Python очень просто, для этого нужно:
- Установить дистрибутив последней версии www.python.org/downloads/.
- Установить подходящий текстовый редактор www.sublimetext.com/3.
После установки дистрибутива запускаем консоль Python через появившийся ярлык в меню «Пуск» и тестируем работоспособность: например, вводим выражение «2 + 2». Если видим результат 4, значит, все работает.
Работать в консоли не очень удобно, поэтому закроем ее, перейдем в текстовый редактор Sublime Text3 и настроим его для работы.
Для начала в главном меню редактора во вкладке Tools → Build System → Python укажем, что собираемся использовать синтаксис Python. Далее пропишем простую команду print(‘Hello world’), сохраним файл с расширением .py и запустим на выполнение комбинацией клавиш Ctrl + B. Если в консоли редактора вы увидите надпись «Hello world», значит, все настроено правильно и можно приступать к работе.
Пишем скрипт для рисования
В данном примере мы напишем скрипт, который будет рисовать дерево. Для работы с графикой в открытом доступе существует специальная Python-библиотека simple_draw. Чтобы установить ее, необходимо открыть командную строку (cmd) и прописать в ней команду pip install simple_draw.
Для начала давайте представим, из чего состоит структура дерева. Это ствол и ветки. В нашей программе дерево будет строиться из векторов — направленных отрезков. Попробуем нарисовать вектор. Перейдем в редактор, создадим новый файл draw.py и пропишем следующий код:
simple_draw.resolution = (1200, 600)
point = simple_draw.get_point(600, 5)
angle, length, width = 90, 100,3
vector_1 = simple_draw.Vector(point, angle, length, width)
Для начала мы указываем, что хотим импортировать в нашу программу библиотеку simple_draw. Затем задаем разрешение окна для отрисовки —1200 на600 пикселей.
Далее создаем переменную point (точка) и с помощью метода (функции) get_point задаем начальную точку, из который будет выходить вектор, —600 пикселей от левого края экрана и 5 пикселей от низа экрана.
Чтобы создать объект Vector, нужно задать ему такие параметры, как точка начала вектора — point, угол отклонения — angle (90 градусов), длина — length (100 пикселей) и толщина линии — width (3 пикселя). Как видно из кода, все эти переменные можно записать в одну строчку.
Переменная vector_1 будет содержать в себе объект — вектор, а чтобы отрисовать его в окне, применим к нему метод draw (рисовать). Сохраним и запустим скрипт.
Представим, что мы отрисовали ствол дерева. Теперь попробуем создать еще несколько векторов, чтобы нарисовать ветви. У дерева может быть огромное количество веток, поэтому придется создавать и большое количество векторов. Такой код будет слишком громоздким и длинным. Чтобы этого избежать, автоматизируем процесс рисования векторов и создадим функцию branch, принимающую на вход параметры point, angle, length и width, которая и будет рисовать ветви.
def branch(point, angle, length, width):
vector = simple_draw.Vector(point, angle, length, width)
return vector.end_point, angle — 30, length * 0.8, width
Данная функция создает вектор с теми параметрами, которые ей передаются в скобках, отрисовывает его, а затем возвращает конечную точку отрисованного вектора (vector.end_point), угол отклонения, который на30 градусов меньше предыдущего (angle –30), длину вектора, немного меньшую исходной (length*0.8) и ширину (width). Попробуем с ее помощью создать несколько новых ветвей.
simple_draw.resolution = (1200, 600)
def branch(point, angle, length, width):
vector = simple_draw.Vector(point, angle, length, width)
return vector.end_point, angle — 30, length * 0.8, width
point = simple_draw.get_point(600, 5)
angle, length, width = 90, 100,3
point_2, angle_2, length_2, width_2 = branch(point, angle, length, width)
point_3, angle_3, length_3, width_3 = branch(point_2, angle_2, length_2, width_2)
point_4, angle_4, length_4, width_4 = branch(point_3, angle_3, length_3, width_3)
point_5, angle_5, length_5, width_5 = branch(point_4, angle_4, length_4, width_4)
Мы нарисовали4 вектора. Каждый последующий вектор исходит от конца предыдущего и отличается длиной и углом отклонения, тем самым формируя изгиб ветви дерева. Но если мы снова представим реальное дерево, то чтобы отрисовать его, потребуется еще множество векторов. Задача программиста — написать как можно более компактный, универсальный и красивый код.
Поэтому сейчас пора освоить такую важную вещь, как рекурсия. Рекурсия — это когда функция внутри своего тела вызывает саму себя. Сократим немного код и перепишем функцию.
simple_draw.resolution = (1200, 600)
def branch(point, angle, length, width):
Как видите, небольшая функция за нас сделала всю работу. Изменив ее параметры и немного «поиграв» с кодом, можно добиться различных форм и видов деревьев.
Заключение
Python — очень перспективный и востребованный язык. Рассмотрев наглядный пример, мы видим, что его синтаксис и правда прост, а код — легко читаем. О возможностях и преимуществах перед другими языками мы тоже успели поговорить.
В ряды Python-разработчиков постоянно вступают новые программисты, расширяя и без того немалую базу знаний и открытого исходного кода. Надеемся, что после прочтения статьи вы тоже всерьез задумаетесь об изучении языка Python и выберите его в качестве основного. А заняться им вы сможете на курсе «Python-разработчик с нуля (2018)» от компании Skillbox.
Практический 4-х месячный курс для тех, кто хочет научиться основам программирования на универсальном, понятном и лаконичном языке с индивидуальным наставником, а также создать свою первую программу на Python и получить реальный опыт разработки.
- 32 часа теории и 16 практических заданий
- Живая обратная связь с преподавателями
- Неограниченный доступ к материалам курса
- Стажировка в компаниях-партнёрах
- Дипломный проект от реального заказчика
- Гарантия трудоустройства в компании-партнёры для выпускников, защитивших дипломные работы
Как установить Python на компьютер и начать на нём писать
Это занимает всего 10 минут.
Онлайн-компиляторы Python хороши, когда нужно быстро протестировать что-то простое, но для полноценной работы их недостаточно. Чтобы использовать всю мощь Python, нужно установить его на свой компьютер, и тогда можно подключать к нему любые библиотеки и писать код любой сложности.
В этой статье покажем, как установить Python под Windows и как с ним работать. Для MacOS всё почти то же самое, а если у вас Linux, то вы лучше нас знаете, как это сделать.
Скачивание и установка
Для начала нам нужно скачать установщик с официального сайта — python.org . Если качать Python с других сайтов, можно подцепить вирус или троян. Скачивайте программы только с официальных сайтов.
Несмотря на то, что Python 3 вышел 10 лет назад, до сих пор многие спорят про то, какую версию лучше использовать — вторую или третью. Мы за прогресс, поэтому качаем Python 3, но вы можете выбрать любую другую.
На главной странице сразу видим большую жёлтую кнопку, на которой написано «Download Python». Нажимаем, сохраняем и запускаем файл. Он весит около 25 мегабайт.
Когда установка закончится, нужно проверить, что всё было сделано правильно. Для этого в командной строке наберите py (латиницей) или python и нажмите клавишу ввода. Если всё хорошо, в ответ Python вам напишет номер своей версии и сборки и предложит несколько команд для знакомства с собой:
Запуск программ
Пока наш Python может работать только через командную строку — какие команды введёте, те он и выполнит. Многим разработчикам это нравится, но для старта это неудобно. Например, чтобы запустить программу, нужно написать в командной строке так:
Полное имя означает, что нужно написать не только название файла, но и диск с папкой, где он находится. Чтобы было понятнее, давайте возьмём наш код из статьи про таймер на Python и сохраним его в файле time.py3 на диске D. Py3 означает, что внутри этого файла будет код на Python3. Можно просто назвать файл python.py, без тройки, но для некоторых моментов это может быть важно.
Теперь, чтобы запустить наш код, напишем в командной строке:
Результат работы — выполненный алгоритм:
Подключаем VS Code
Мы уже рассказывали об этом редакторе кода — он быстрый, бесплатный и есть много плагинов. Чтобы работать с Python-файлами было проще, научим VS Code понимать и запускать их. Для этого нам нужно найти и установить специальный плагин для этого языка. Открываем вкладку Расширения (Extensions) и пишем такое:
В результатах поиска находим Python и нажимаем Install:
Затем то же самое делаем для подсветки синтаксиса: пишем в Расширениях команду ext:py3 и устанавливаем плагин MagicPython. После этого перезапускаем VS Code, открываем наш файл и нажимаем F5. Когда выпадающее окошко спросит, с чем будем работать — выбираем Python. В итоге мы получаем редактор кода с нужной нам подсветкой синтаксиса и результатом работы в том же окне. Красота!
Программирование на Python: нет смысла идти на платные курсы пока не разберетесь в бесплатных
Какая математическая база нужна для Python, чем он хорош для новичков и какие задачи можно решить с помощью этого языка программирования
Python часто советуют изучать тем, кто никогда раньше не программировал. Одно из его преимуществ — универсальность, за счёт которой он используется профессионалами в разных областях: от журналистики до продакт-менеджмента. Его можно применять для решения рутинных задач: например, чтобы визуализировать большой объём данных или составлять списки дел и покупок. Автор и менеджер программы «Анализ данных» в Яндекс.Практикуме Анна Чувилина рассказала как оптимизировать свой быт и работу при помощи программирования, какие библиотеки (шаблоны решений) могут использовать новички и как выбрать курс по изучению Python. Материал подготовлен Академией Яндекса
Почему Python советуют новичкам
Одно из главных преимуществ Python — низкий порог входа. Код на нём лаконичный и обычно сходу понятен даже тем, кто изучал другой язык. А подробная документация поможет разобраться в программировании с нуля.
Ресурсы для изучения Python:
Вокруг Python сформировались сообщества энтузиастов, которые пишут на этом языке. Например, в Москве есть группа Moscow Python: они проводят конференции и неформальные встречи и сотрудничают с крупными ИТ-компаниями.
Для Python существует объёмная система библиотек — готовых решений для тех или иных задач. Есть как алгоритмы для базовых математических операций, так и для сложных задач: например, распознавания картинок и звуков.
У языка много понятных приложений: его можно использовать для анализа данных и машинного обучения, бэкенда, веб-разработки, системного администрирования и игр. Конечно, при этом нужен разный набор навыков помимо программирования, но с Python можно начать осваивать почти любую предметную область.
Важно понимать, что для анализа данных язык программирования — это инструмент. Анализ данных можно проводить и в Excel, и на бумажке, а программирование — только один из вариантов того, как можно решать такие задачи.
Одно из распространённых приложений Python — работа с данными для продакт-менеджмента. Анализ данных позволяет менеджерам получать инсайты о поведении пользователей и принимать обоснованные решения. В крупных компаниях должности аналитиков и продакт-менеджеров обычно разделены, но в небольших проектах продактам нужно работать с данными самостоятельно.
Как понять, что вам нужен именно Python
Называть его «убийцей Excel» — некорректно. Многие команды и компании в России ведут весь учёт в обычных таблицах, и им этого достаточно. А Python нужен в тот момент, когда речь идет про действительно большие объемы данных. Например, у Яндекс.Музыки множество платящих пользователей, и их действия ежедневно генерируют какие-то события (лайки и прослушивания) — и терабайты данных. Хранить их в табличке Excel — из разряда фантастики.
В Python проще делать интерактивную и сложную визуализацию или проводить вычисления — для этого существуют библиотеки вроде Seaborn, matplot и Plotly. В Excel есть встроенный аппарат для решения математических задач (например, работы с данными), но для него нужно запоминать много названий операций — и работает он довольно неповоротливо. Кроме того, в Python можно быстрее и с разных сторон посмотреть на данные. Регрессию можно построить и в Excel, но зачем, когда в Python есть для этого готовые библиотеки?
Для статистических расчетов можно использовать R — люди с математическим образованием обычно осваивают его быстрее, чем Python. Однако большинству будет проще начать с Python.
Для разных задач анализа данных существуют коробочные решения. Например, Amplitude (для продуктовой аналитики), Mixpanel (для анализа поведения пользователей) Яндекс.Метрика и Google Analytics. При этом их использование часто платное.
Где применять Python, если вы не разработчик
Помимо анализа данных у языка есть и более простые приложения. Так, в учебниках по Python часто встречается задача с рассылками. В ней нужно создать рассылку, например, для людей, которые не сдали деньги на ремонт — найдя их данные в Excel-таблице. С помощью такого скрипта можно разослать письма по шаблону — и имена будут подставлены автоматически.
Python — про автоматизацию рутинных задач. Например, можно запустить скрипт, который подставляет пароли — и он автоматически откроет запароленные страницы или папки. Есть алгоритмы для того, чтобы автоматически создавать списки покупок или переименовывать фотографии определённым образом.
Люди, которые умеют писать код, придумывают такие вещи «на автомате». Например, маркетологи могут запустить скрипт для построения воронок продаж. А тестировщики — написать алгоритм, который будет подставлять данные в формы и тестировать приложения.
Если говорить про анализ данных, то многие начинают осваивать его из любопытства — чтобы найти инсайты в сфере, которую пока не исследовали. Например, можно определить социальные проблемы своего региона, анализируя опубликованную статистику. А если вы хотите через какое-то время попасть на стажировку или на работу, где нужен анализ данных, то такой кейс поможет вам показать свои навыки. Начать можно с простых, стандартных проектов, которые обычно предлагают тем, кто изучает Python.
Что нужно, чтобы выучить Python
Из математического аппарата кроме базовой арифметики для программирования ничего не нужно. Чтобы придумать, какой алгоритм использовать для решения той или иной задачи, важно структурное мышление — но это не математическая компетенция. Парадокс в том, что и развивать его нужно с помощью регулярной работы с задачами — важно быть готовым просидеть над, казалось бы, тривиальным заданием несколько часов и не отчаяться.
Для анализа данных, помимо школьной математики, понадобятся знания математической статистики и теории вероятности. Начинающему специалисту важнее всего освоить базовые понятия: уметь проверять гипотезы, знать, что такое доверительные интервалы, чем отличаются медиана и мода, понимать, как обозначать события и их вероятности.
Материалы по математике:
- Курс на Coursera
- Видеокурс по алгоритмам
- Статистика. Вероятность. Комбинаторика — Я. С. Бродский
Тем, кто хочет заниматься анализом данных (как профессионально, так и для себя), важно развить критическое мышление. Например, нужно самому выделять критерии для сравнения объектов: тут нет какого-то стандартного решения. Ещё важно сходу видеть закономерности и аномалии в данных.
Изучать программирование и анализ данных можно и самому — я не рекомендую обращаться к платным курсам до тех пор, пока вы не посмотрели бесплатный контент.
Во-первых, он служит для профориентации: чтобы лучше понять, какие приложения есть у программирования или анализа данных для разных профессий. Во-вторых, даёт понять, сколько сил и времени нужно будет прикладывать для изучения.
Преимущества обучения на курсах в том, что на них можно получить чётко сформулированные практические задачи. Также преподаватели могут рассказать о том, как общаться с заказчиком и уточнять у него необходимую информацию.
Как выбрать образовательную программу
Выбирая образовательную программу, важно обратить внимание на преподавателей, которые его ведут или создавали для него контент, — можно посмотреть их профили на Facebook и узнать про профессиональный опыт.
Что касается цены, то по моему опыту, качество курса не всегда с ней коррелирует — поэтому ориентироваться нужно на то, сколько вам комфортно потратить на обучение.
Также стоит чётко сформулировать то, что хочется получить в результате, — и сделать это ключевым критерием для выбора. Бывают случаи, когда студенты приходят на курс по анализу данных для менеджеров и ожидают занятия по программированию — а их учат общаться с аналитиками и рассказывают общие вещи про то, как внедрять анализ данных. Зачастую проблема не в плохой организации или преподавателях, а в том, что человек сам не проверил, соответствует ли программа его задачам. Правило с постановкой целей работает не только на выбор программы, но и на обучение в целом — не стоит осваивать язык программирования, чтобы поставить галочку.
Что такое Python и для чего он используется
Python — это высокоуровневый язык программирования, который используется в различных сферах IT, таких как машинное обучение, разработка приложений, web, парсинг и другие.
В 2019 году Python стал самым популярным языком программирования, обогнав Java на 10%. Это обусловлено многими причинами, одна из которых — высокая оплата труда квалифицированных специалистов (около 100 тысяч долларов в год).
Язык программирования Python
Различные языки программирования обычно доминируют в какой-то отрасли (или нескольких), для работы в которой они хорошо подходят. Но это не значит, что программист ограничен использовать строго определённый инструмент, поэтому любой язык общего назначения, такой как Python, может применять для создания чего-угодно.
Python смог захватить малую часть рынка веб-разработки, иногда используется для написания десктопных приложений и, конечно, тотально доминирует в сфере машинного обучения. Кроме того, на нём создаётся много прототипов, которые позволяют быстро набросать функционал и внешний вид будущего проекта.
Происхождение названия
Автор языка Python назвал его в честь британского комедийного шоу “Monty Python”, которое было популярно в начале 1970-х годов.
Это телешоу позволяло автору расслабиться и отвлечься от разработки языка. Однако, несмотря на настоящее происхождение названия, для людей более очевидно связывать Python со словом “змея”. Этому также способствует логотип, на котором изображена рептилия.
И хотя создатель языка не раз говорил, что название никак не связано со змеями, повлиять на мнение общества так и не удалось.
Питон или Пайтон?
Будь то название британского телешоу или английское звучание слова “змея”, Python правильно произносить, как Пайтон. Однако, около 80% Российского сообщества привыкли использовать слово “Питон”.
Нельзя сказать, что однозначно правильно использовать один из вариантов, многие названия адаптируются под произношения конкретного языка, а изменить сложившиеся привычки общества очень сложно. Однако, вариант названия “Питон” уместно употреблять только в разговоре с русскоязычными собеседниками, потому что на любой международной конференции значение слова “Питон” просто не поймут, ведь в английском языке его нет, есть только “Python (Пайтон)”.
Логотип
На логотипе изображены две змеи, образующие квадрат с выпуклым центром, это часто вводит в заблуждение пользователей, вынуждая ассоциировать название языка с рептилией.
Логотип создал брат автора, Юст ван Россум — программист и шрифтовой дизайнер. Он разработал как дизайн логотипа (две змеи), так и шрифт текста Flux Regular.
История создания
Язык начал разрабатывать программист, Гвидо ван Россумом, в конце 1980-х. На тот момент он работал в центре математики и информатике в Нидерландах.
Гвидо ван Россум увлекался работой с «железками» ещё со школьных лет, и хотя он не находил поддержки и одобрения у своих сверстников, это не помешало ему самостоятельно разработать язык программирования.
Россум работал над Python в свободное время, в качестве основы он взял язык программирования ABC, в разработке которого когда-то участвовал.
Этапы истории языка программирования Python:
- В феврале 1991 исходный код языка был опубликован на alt.sources. Уже тогда язык придерживался объектно-ориентированного подхода, мог работать с классами, наследованием, функциями, обработкой исключений и всеми основными структурами данных.
- В 2000 году вышла в релиз вторая версия Python. В неё добавили много важных инструментов, включая поддержку Юникода и сборщик мусора.
- 3 декабря 2008 в релиз вышла третья версия Python, которая является основной до сих пор. Многие особенности языка были переделаны и стали несовместимы с предыдущими версиями. И хотя функциональность третьей версии ничем не уступает второй, развитие языка разделилось на две ветки. Кто-то продолжал использовать Python 2, чтобы поддерживать старые проекты, кто-то полностью перешёл на третью версию.
Дату смерти второй версии установили на 2015 год, однако, боясь не успеть перенести весь существующий код на Python 3, время жизни Python 2 продлили жизнь до 2020 года.
Python — простой язык
Синтаксис Питона всегда выделял его на фоне других языков программирования. Он не страдает избыточностью, схожесть синтаксиса с обычным английским позволяет понять код даже обычному пользователю, кроме того, программист пишет меньше строк кода, потому что нет необходимости использовать символы: «;», «<», «>». Вложенность обозначается отступами, что повышает читаемость кода и приучает новичков к правильному оформлению.
Python упрощает написание кода и делает разработку быстрой, всё потому что он обладает следующими особенностями:
- Динамическая типизация. Программисту не нужно указывать тип переменных, язык присвоит его сам. Операнды разных типов, участвующие в одной операции, автоматически приводится к нужному по определённым правилам.
- Удобный возврат нескольких значений функцией. Их можно перечислить через запятую и они автоматически преобразуются в список. Чтобы вернуть массив из функции, достаточно написать “ return имя_массива “. Не нужно выделять память и передавать указатели в функцию.
- Автоматическое выделение памяти. Программисту не нужно самостоятельно выделять память под что-либо. С одной стороны это уменьшает контроль программиста над программой, с другой, разработка значительно ускоряется.
- Сборщик мусора. Если объект становится бесполезным (на него перестаёт что-либо ссылаться), он автоматически удаляется сборщиком мусора. Сборщик мусора позволяет оптимизировано использовать память и не удалять бесполезные объекты вручную.
- a, b = b, a. Эта строка меняет местами значения переменных, теперь то, что было в a, находится в b и наоборот. Такое возможно, потому что Питон сначала рассматривает переменные справа от знака “=” и помещает их в список, то же он делает с элементами слева от “=”, затем он связывает каждый элемент правого списка с левым. Таким способом можно обменивать значения не только двух переменных, но и трёх, пяти и так далее.
- Привязка типа данных. Тип данных привязан к значению, а не к переменной. То есть значение — это какой-то объект с атрибутами, которые определяют его тип и другие характеристики, а переменная — просто ссылка на этот объект. Такой подход позволил обойтись без явного определения типов и значительно упростил повторное присваивание значения переменной (особенно, если тип нового значения отличен от начального).
- Цикл for. Работать с массивами, списками и другими контейнерами в Питоне просто и удобно. Когда необходимо перебрать все его элементы, конструкция выглядит так: “ for x in контейнер: ” (перебор идёт от 0 до последнего элемента, его индекс можно обозначить как -1). Если нужно, чтобы прошло определённое количество циклов, пишут так: “ for x in range(1,9): ” (цикл будет выполняться со значениями x от 1 до 8).
- Интерпретируемый язык. Написанный код не нужно компилировать, достаточно запустить его и получить результат. Более того, можно работать в интерактивном режиме и получать результат буквально после каждой операции.
Чтобы ускорить разработку, часть программы (обычно не сильно влияющую на скорость работы) пишут на Питоне.
Именно благодаря простоте этот язык программирования смог занять доминирующее место в сфере машинного обучения. Люди, так или иначе связанные с наукой, предпочитают не тратить много времени на такие вещи, как написание кода, поэтому Python отлично подошёл для реализации поставленных перед ними задач.
Пример кода:
Популярность
Несмотря на то что языку уже более 29 лет, он популярен среди программистов всего мира. Python используется почти в каждом среднем или крупном проекте, если не как основной инструмент разработки, то как инструмент для создания прототипа или написания какой-то его части.
Он собрал вокруг себя огромное сообщество разработчиков, по результатам опроса на Stackoverflow Python занял 7 место с почти 39% голосов.
Индекс TIOBE
Этот индекс показывает популярность языков программирования, информация обновляется каждый месяц. Оценка популярности основывается на количестве квалифицированных специалистов по всему миру. Для анализа также используются все популярные поисковые системы. Важно понимать, что индекс не показывает лучший язык программирования, он лишь показывает их популярность.
Согласно индексу TIOBE Python занял 3 место с 9-ю процентами популярности. Он уступил лишь языкам Java и C.
Этот индекс основывает на количестве поисковых запросов, касающихся учебных материалов по языку.
По данным с PYPL Python занимает первое место с более чем 29% популярности и на 10% обгоняет Java.
statista.com
Сервис предоставляет различные виды статистики, среди которых – популярность языков программирования.
Согласно опросу более 85 тысяч респондентов, Python занимает 4 место, уступив таким языкам, как JS, языки разметки и SQL.
Скорость работы
Программисты часто задаются вопросом: “Не приведёт ли использование Python к снижению производительности?”. Не стоит делать какие-либо выводы без детального разбирательства.
Если рассматривать только скорость выполнения кода, то становится ясно, что Python уступает другим языкам программирования, таким как C. Действительно, динамическая типизация, интерпретируемость и другие особенности, облегчающие работу программиста, приводят к ухудшению производительности.
Для любого проекта важно выбрать правильный инструмент и лучшую реализацию. Улучшая одно, программист жертвует другим, его задача — найти идеальный баланс, ориентируясь на конкретное техническое задание.
Python позволяет писать достаточно быстрый код, однако может подводить в некоторых “узких” местах, которые и оказывают наибольшее влияние на производительность всего проекта. Чтобы не затянуть разработку и получить на выходе программу, работающую на высокой скорости, её структуру проектируют так, чтобы соотношение “быстродействие/время разработки” было максимальным.
Программисты используют приёмы, позволяющие нивелировать недостаточную скорость выполнения программ на Pyton:
- Встраивание кода на С. С помощью такого приёма можно заметно повысить производительность, обычно на С пишут те участки кода, которые обрабатывают много запросов в единицу времени. Например, функцию, которая получает данные из одной базы данных, обрабатывает их и отсылает в другую, лучше написать на языке С, если объем проходящей информации достаточно большой.
- Использование лучших алгоритмов и инструментов. Одну и ту же задачу можно решить по-разному. Во-первых, программист должен выбрать наиболее эффективный алгоритм, обеспечивающий лучшую производительность, например, для поиска элемента в отсортированном массиве можно перебирать его от начала до конца, в лучшем случае (элемент в начале массива) поиск выполнится быстро, в худшем (элемент в конце массива) — медленно. Эффективнее использовать методом деления пополам (двоичный поиск), который найдёт нужный элемент за минимальное количество итерация в массиве любой длины. Во-вторых, для реализации задачи нужно подбирать правильные инструменты. Например, если последовательность элементов строго определена и не изменяется, лучше использовать кортеж, а не список. Он требует меньше места, обрабатывается быстрее и защищён от случайных изменений.
- Оптимизация интерпретатора. Скорость программ на Python сильно зависит от работы интерпретатора, одни конструкции работают быстрее, другие медленнее.